Pengaruh tegangan kerja terhadap spektrum frekuensi gelombang arus bocor pada isolator keramik

Main Article Content

Awan Setiawan Imron Ridzki Priya Surya

Abstract

Penyaluran energi listrik pada jaringan PT PLN PERSERO khususnya pada jaringan distribusi sering mengalami kegagalan yang disebabkan arus bocor pada isolator keramik. Intensitas kerusakan disebabkab oleh polutan debu yang menempel pada permukaan isolator, ditambah pula dengan kelembaban udara yang ada di daerah tropis seperti Indonesia. Hal ini secara kumulatif, menyebabkan flashover pada permukaan isolator dan menyebabkan kegagalan penyaluran energy listrik pada jaringan. Pengaplikasian Silicon Rubber sebagai bahan pelapis isolator dapat mengurangi polutan debu yang menempel pada permukaan, hasil penelitian menunjukkan bahwa parameter tegangan akan berpengaruh juga pada besarnya arus bocor yang mengalir pada permukaan isolator. Semakin tinggi tegangan kerja akan memperbesar nilai RMS arus bocor yang mengalir. Terukur pada level tegangan 20 kV arus bocor yang terukur memiliki RMS sebesar 0,0432 A dengan THD sebesar 15,76 % dengan beda fasa arus bocor terhadap tegangan sumber bersifat leading hampir mendekati α = 900.


Distribution of electricity in PT PLN PERSERO network, especially in distribution networks often fails due to leakage current in ceramic insulation. The intensity of damage caused by dust pollutants that are attached to the insulation surface, coupled with the humidity of the air in tropical areas such as Indonesia. This cumulatively causes flashover on the insulation surface and causes failure of electricity distribution to the network. The use of Silicon Rubber as an insulating coating can reduce the amount of dust contaminated on the surface, the results show that the voltage parameter will also affect the amount of leakage current flowing to the insulation surface. Higher working voltage will increase the current RMS leakage value. Measured at a voltage level of 20 kV the current leakage was RMS 0.0432 A with THD of 15.76%, phase difference of leakage current to leading source voltage is almost close to α = 900.

Downloads

Download data is not yet available.

Article Details

How to Cite
SETIAWAN, Awan; RIDZKI, Imron; SURYA, Priya. Pengaruh tegangan kerja terhadap spektrum frekuensi gelombang arus bocor pada isolator keramik. JURNAL ELTEK, [S.l.], v. 18, n. 2, p. 59-67, oct. 2020. ISSN 2355-0740. Available at: <https://jraam.polinema.ac.id/index.php/eltek/article/view/255>. Date accessed: 28 sep. 2021. doi: https://doi.org/10.33795/eltek.v18i2.255.
Section
Articles

References

[1] Boudisa, R. Djafri, S. Haddad, A. Belaicha, R. Bearsh, R. Effect of insulator shape on surface discharges and flashover under polluted condition, IEEE Transactions on Dielectric and Electrical insulation, Vol 12 No 3, June 2005, pp 429 – 437
[2] Suwarno, Leakage Current waveform of outdoor polymeric insulator and possibility application for diagnostic of insulator condition, Journal electrical engineering and technology, Vol 1 No 1, 2006, pp 114 – 119
[3] IEEE Standard 1523, “IEEE Guide for the Application, Maintenance and Evaluation of Room Temperature Vulcanizing (RTV) Silicone Rubber Coatings for Outdoor Ceramic Insulators”, 2002.
[4] E.A. Cherney, “RTV Silicone –A high Tech Solution for A Dirty Insulation Problem” IEEE Electrical Insulation Magazine, 1995
[5] E.A. Cherney, “RTV Silicone Rubber Coating for Substation Insulator Maintenance””IEEE conference publication, 1993
[6] E.A. Cherney, R. Hackam and S.H. Kim, “Porcelain Insulator Maintenance with RTVSilicone Rubber Coatings”, IEEE transaction on power delivery, 1991
[7] Saadat, H. (2004). Power System Analysis Second Edition. Singapore: McGraw-Hill International Edition.
[8] Wood, A. J. (1998). Power Generation, Operation and Control. New York: John Wiley & Sons, Inc.
[9] Zhu, J. (2009). Optimization Of Power System Operation. China: A John Wiley & Sons, INC.
[10] James L. Goudie “Silicon for Outdoor Insulator Maintenance”, IEEE conference publications, 2002
[11] S.H. Kiem, E.A. Cherney, R. Hackam, “Hydrophobic Behaviour of Insulator Coated with RTV Silicone Rubber”, IEEE conference publications, 1991
[12] H. Deng, R. Hackam, E.A. Cherney, “Factors Influencing the Electrical Performance of RTV Silicone Rubber Coating”, IEEE conference publications, 1994
[13] Suwarno, Feri Pratomosiwi, “Application of RTV Silicone Rubber Coating for Improving Performance of Ceramic Outdoor Insulator Under Polluted Condition”, IEEE Conference Publications, 2009
[14] Zhidong Jia, Su Fang, Haifeng Gao, Zhicheng Guan, Limiang Wang, Zhihai Xu, “Development of RTV Silicone Coating in China : Overview and Bibliography”, IEEE Electrical Insulation Magazine, 2008
[15] E.A. Cherney, R.S.Gorur, “RTV Silicone Coating for Outdoor Insulators”, IEEE Transaction on Dielectric and Electrical Insulation, 1999